
4. HMS/FB Architecture and its Implementation

James H. Christensen

Rockwell Automation, 1 Allen-Bradley Drive,

Mayfield Heights, Ohio 44121 USA

Email: jhchristensen@ra.rockwell.com

Abstract. Properly architected holonic systems can enhance the ability of

each set of players in the industrial automation and control market to deliver

added value by encapsulating, reusing and deploying their specialized intel-

lectual property at succeedingly higher levels of integration. Such an archi-

tecture expands on the HMS concept of cooperation domains to include both

low-level control (LLC) and high-level control (HLC) domains. LLC refers

to normal, non-holonic control and automation functions, while HLC refers

to the integration of these functions into holons through the use of software

agent technology. Function blocks, as defined in the International

Electrotechnical Commission (IEC) 61499 series of standards, can be used

for encapsulation, reuse, distribution and integration of both LLC and HLC

functions, while HLC functionality can be standardized as defined by the

Foundation for Intelligent Physical Agents (FIPA).

4.1 Introduction

This chapter outlines an open, standards-based architecture for holonic manufac-

turing systems (HMS) which is capable of fulfilling the economic and technical

requirements for global adoption, deployment and support. Issues arising in the

implementation of this architecture, and means for their resolution, are presented.

Throughout this chapter, the following definitions apply:

 Architecture The structure and relationship among functional units in a sys-

tem, including their mutual interfaces. The architecture may also include the

system’s interfaces with its environment.

 System A set of interrelated elements considered in a defined context as a

whole and clearly delineated from its environment.

 Functional unit An entity of hardware or software, or both, capable of ac-

complishing a specified purpose, and which may be composed of other func-

tional units.

 Interface A shared boundary between two functional units, defined by func-

tional characteristics, common physical interconnection characteristics, sig-

nal characteristics and other characteristics, as appropriate.

 Holon A functional unit capable of both autonomy and cooperation.

 Autonomy The extent to which an entity can create, control and monitor the

execution of its own plans and/or strategies, and can take suitable corrective

actions against its own malfunctions.

 Cooperation A process whereby a set of entities negotiate and execute mu-

tually acceptable plans and take mutual actions against malfunctions.

 Holonic system A system, some of whose functional units are holons.

 Holonic manufacturing system A holonic system intended for application in

the domain of manufacturing.

4.2 Architectural Requirements

This section describes the economic and technical requirements for a practical

HMS architecture which is capable of global adoption, deployment and support.

4.2.1 Economic Requirements

Holonic systems will only be succesful in the industrial automation and control

market if they enhance the ability of each set of players to deliver added value by

encapsulating, reusing and deploying their specialized intellectual property (IP) at

succeedingly higher levels of integration, as illustrated in Fig. 4.1.

This market exhibits the characteristics of a network economy as described by

Shapiro and Varian [4.1]. These characteristics include large network externalities

(user economies of scale), where the value of a technology increases exponentially

with the number of users, and positive feedback, where successful application of

the technology encourages additional users and vendors to enter the market.

A key ingredient of success in markets of this type is the rapid development of

a whole range of complementary products and services which facilitate the de-

ployment of the technology. In Fig. 4.1, these are identified as runtime platforms,

engineering methodologies and software tools. Hence a major prerequisite for the

success of HMS in this market is that it be open and standards-based to encourage

early entry of suppliers of such products and services. The technological feature of

openness will be defined in the next section of this chapter.

Fig. 4.1. Holonic value-add chain

4.2.2 Technical Requirements

In order to meet the economic requirements expressed above, an HMS architecture

must be component-based to support the encapsulation and protection of intellec-

tual property (IP). Furthermore, the components developed within this architecture

must be portable among both software tools and runtime platforms, both in order

to increase the value of the encapsulated IP and in order to encourage the emer-

gence of a broad spectrum of software tools for component development and de-

ployment.

HMS applications are strongly differentiated from traditional information tech-

nology (IT) applications in that they are directly involved in the control of physi-

cal devices and machines, and are highly distributed in nature. Hence, a successful

HMS architecture must also be inherently distributed, and must provide a straight-

forward mapping from distributed applications to physical devices. This increases

the value of the embedded IP for the device vendor, and improves the

deployability and hence the value of IP components.

In order to achieve the desired end user economies of scale, the HMS architec-

ture must be functionally complete, that is, capable of encapsulation and deploy-

ment of IP into components addressing all the technological requirements of

holonic systems for industrial process measurement, control and automation, in-

cluding:

 control and automation components,

 machine and process interface components,

 communication interface components,

 human/machine interface (HMI) components, and

 software agent components.

Industrial automation and control systems have a huge installed base with phys-

ical equipment which may have a lifetime of 10 years or longer. Hence, an im-

portant requirement for timely adoption of an HMS architecture will be its provi-

sions for retrofit of existing systems and their migration to the HMS architecture

over time.

As discussed in the preceding section, an HMS architecture must be open; that

is, it must exhibit the following characteristics, as illustrated in Fig. 4.2:

 Portability

Software tools and agents can accept and correctly interpret library elements

(software components and system configurations) produced by other soft-

ware tools.

 Interoperability

Devices can operate together to perform the autonomous and/or cooperative

functions specified by one or more distributed applications.

 Configurability

Devices and their software components can be dynamically configured (se-

lected, assigned locations, interconnected and parameterized) by multiple

software tools and/or software agents.

Fig. 4.2. Attributes of open industrial systems

4.3 Architecture Overview

It has been proposed [4.5] that holonic systems be viewed as consisting of one or

more cooperation domains, that is, logical spaces in which holons may locate,

contact, communicate and interact with each other. To meet the requirements ex-

pressed in section 4.2, it is proposed that this concept be expanded to include both

low-level control (LLC) and high-level control (HLC) domains. LLC refers to

normal, non-holonic control and automation functions, while HLC refers to the in-

tegration of these functions into holons through the use of software agent technol-

ogy.

Table 4.1 summarizes the major characteristics of these two domains. To meet

the critical requirements for openness, it is proposed that these domains be charac-

terized principally in terms of two sets of standards:

 The IEC (International Electrotechnical Commission) 61499 series of

standards [4.2, 4.3, 4.9] for the use of function blocks in distributed indus-

trial automation and control systems.1

 The FIPA (Foundation for Intelligent Physical Agents) architectural

standard for software agent systems [4.4].

The following sections describe in detail the proposed LLC and HLC architec-

tures and their integration.

Table 4.1. LLC (low-level control) and HLC (high-level control = cooperation) domains

Domain Major

functions

Standards Entities Ontology Response times Message

size

LLC Control/ au-

tomation

IEC 61499

[4.2, 4.3]

Function

blocks

Physical

operations
10 s to

100 ms

1 bit to

100 bytes

HLC Negotiation/

coordination

FIPA [4.4] Agents Manufactur-

ing tasks

100 ms to

10 sec

100 to 4K

bytes

4.4 Low-Level Control Architecture

As shown in Fig. 4.3, the LLC architecture addresses the functions associated with

the domain of real-time control, including:

 the control and automation of physical equipment;

 real-time communications among controllers;

 input/output (I/O) between controllers and the controlled machines; and

1 See http://www.holobloc.com for software tools, runtime platforms and up-to-date infor-

mation on the IEC 61499 standard and its application to HMS.

 interface among the controlled systems and their human operators, design-

ers, installers and maintainers.

The remainder of this section describes the major architectural elements of IEC

61499 and their application to the implementation of these functions.

Fig. 4.3. Low-level control architecture

4.4.1 Basic Architectural Elements of IEC 61499

As shown in Fig. 4.4, the IEC 61499 model of a system consists of a number of

devices (physically contained functional units). These devices can:

 communicate with each other over communication networks;

 interface to physical processes, equipment or machines; and

 serve as platforms for the execution of distributed applications.

Fig. 4.4. IEC 61499 system model[4.2]

As shown in Fig. 4.5, the IEC 61499 model of an application comprises a net-

work of function blocks interconnected by flows of events and data over event

connections and data connections, respectively. As shown in Fig. 4.4, the elements

of these applications are in principle distributable among multiple devices. The

function blocks in turn are considered to be instances of function block types,

which are specified in formal declarations using the means defined in IEC 61499-

1 [4.2].

Fig. 4.5. IEC 61499 application model [4.2]

In IEC 61499 a device may consist of multiple resources, as shown in Fig. 4.6.

These resources may share communication and process interfaces. Each resource

may contain local applications, or the local parts of distributed applications, as

shown in Fig. 4.7. In addition, the resource provides a platform for scheduling the

execution of algorithms in function blocks, and for mapping underlying operating

system services such as communications and machine/process I/O into service in-

terface function blocks.

Fig. 4.6. IEC 61499 device model [4.2]

Fig. 4.7. IEC 61499 resource model [4.2]

4.4.2 Reference Example

The example shown in Fig. 4.8 will be used throughout this section to illustrate the

application of the elements of IEC 61499 to meet the requirements of the LLC ar-

chitecture. In this example, an actuator can move a workpiece along a slide in the

“forward” direction at a velocity VF and in the “reverse” direction at a velocity

VR. These velocities are characteristic of the particular physical actuator. In some

mechanisms these velocities may even be time-varying according to a predeter-

mined “velocity profile”. The workpiece itself may be be another mechanism, for

instance, an end effector such as a gripper.

Associated with the mechanism are two sensors: a HOME sensor, which is ac-

tivated when the workpiece has moved to the end of the slide in the reverse direc-

tion, and an END sensor, which is activated when the workpiece has moved to the

end of the slide in the forward direction. These sensors may exhibit hysteresis as a

function of the sensor characteristics and their interaction with the mechanism.

Fig. 4.8. A bidirectional mechanism

4.4.3 Interface Abstraction

IEC 61499-1 [4.2] defines the adapter interface construct to permit the abstraction

of interfaces between function blocks. This has three major benefits, as will be

seen later:

1. It permits the representation of multiple data and event connections be-

tween function blocks with a single line, thus helping to eliminate dia-

gram clutter.

2. It enables the abstract representation of patterns of interaction between

function blocks through the use of service sequence notation.

3. It facilitates the reuse of the interaction patterns for differing functional

implementations , for instance in converting from a simulated to an ac-

tual physical system.

For the example of the bidirectional mechanism, this pattern is represented as

shown in Fig. 4.9. Here a CMD event is used to convey Boolean values FWD and

REV from a control algorithm, indicating that motion is commanded in the for-

ward or reverse direction, respectively. Similarly, an IND event is used to convey

changes in the boolean values of the FWD and REV sensors back to the control

algorithm. Typical sequences of operation are shown in Figures 4.9b-d, and the

corresponding values conveyed are shown in Table 4.2 in the informal notation of

IEC 61499.

(a)

(b)

(c)

(d)

Fig. 4.9. Example of IEC 61499 adapter interface. (a) Interface. (b) Forward motion se-

quence. (c) Reverse motion sequence. (d) Stop motion sequence

Table 4.2. Operational sequences of mechanism interface

SERVICE Client/Server

SEQUENCE forward_motion

 Client.CMD(FWD=1,REV=0) -> Server.CMD(FWD,REV);

 Server.IND(HOME=0) -> Client.IND(HOME);

 Server.IND(END=1) -> Client.IND(END);

END_SEQUENCE

SEQUENCE reverse_motion

 Client.CMD(FWD=0,REV=1) -> Server.CMD(FWD,REV);

 Server.IND(END=0) -> Client.IND(END);

 Server.IND(HOME=1) -> Client.IND(HOME);

END_SEQUENCE

SEQUENCE stop_motion

 Client.CMD(FWD=0,REV=0) -> Server.CMD(FWD,REV);

END_SEQUENCE

END_SERVICE

4.4.4 Control and Automation Functions

In the IEC 61499 LLC architecture, combinational and sequential control func-

tions are typically performed by basic function blocks, i.e., instances of basic

function block types. In these types, the execution of control algorithms is under

the control of event-driven state machines represented as Execution Control

Charts (ECCs). As shown in Fig. 4.10, each state in the ECC is associated with

one or more actions. Each action consists of zero or one algorithm to be executed

and zero or one output event to be issued upon the completion of algorithm execu-

tion (or immediately if no algorithm is associated with the state). The algorithms

are executed and output events issued as soon as possible after activation of the

associated execution control state (EC state). Transition conditions between states

are expressed as Boolean combinations of event inputs and Boolean expressions

involving input, output and internal variables of the function block. A transition is

cleared, that is, its predecessor state is deactivated and its successor state is acti-

vated when triggered by an associated event when its transition condition is true.2

2 Subclause 2.2.2.2 of IEC 61499 [4.2] provides a rather complex model for the operation

of ECCs. A simpler model based on Harel state charts [4.6] is under consideration. In ei-

ther case, transition conditions consisting of a single event, a pure Boolean condition not

involving an event, or an AND combination of both will function as expected.

Fig. 4.10. Execution control chart (ECC) elements [4.2]

Figure 4.11 shows the usage of an ECC in a basic function block which pro-

vides cyclic operation of the bidirectional mechanism shown in Fig. 4.8. Operation

for a single cycle only, or continuous cycling is provided.

(a)

(b)

Fig. 4.11. A basic function block for low-level control. (a) Interface.

(b) Execution control chart

Algorithms in basic function blocks are typically expressed in one of the IEC

61131-3 programming languages [4.7, 4.8], specifying a mapping from the values

of the input, output and internal variables to new values for the internal and output

values. Table 4.3b shows the simple algorithms associated with the MECH_CTL

function block type shown in Fig. 4.11, expressed in the IEC 61131-3 Structured

Text (ST) language [4.7]. Table 4.3a shows the informal semantics of the inputs

and outputs of this function block type expressed in the textual syntax defined in

IEC 61499-1 [4.2].

Table 4.3. Partial textual declarations for the MECH_CTL function block type.

(a) Interface declarations. (b) Algorithms

(a)

EVENT_INPUT

 START WITH SINGLE, HOME, END; (* Start Cycle *)

 SENSE WITH HOME, END; (* Sensor Change Notification *)

 ESTOP; (* Emergency (Stop Immediately) *)

END_EVENT

EVENT_OUTPUT

 CMD WITH FWD, REV; (* FWD/REV Command *)

END_EVENT

VAR_INPUT

 SINGLE : BOOL; (* 1=Single Cycle, 0=Auto-Repeat *)

 HOME : BOOL; (* Tool at HOME position *)

 END : BOOL; (* Tool at END position *)

END_VAR

VAR_OUTPUT

 FWD : BOOL; (* Forward actuation *)

 REV : BOOL; (* Reverse actuation *)

END_VAR

(b)

ALGORITHM ADVANCE IN ST :

 FWD:=TRUE;

 REV:=FALSE;

END_ALGORITHM

ALGORITHM RETRACT IN ST :

 FWD:=FALSE;

 REV:=TRUE;

END_ALGORITHM

ALGORITHM STOP IN ST :

 FWD:=FALSE;

 REV:=FALSE;

END_ALGORITHM

4.4.5 Diagnostic Functions

Figure 4.12 shows a function block type that may be used for model-based diag-

nostics of the operation of the bidirectional mechanism shown in Fig. 4.8. It is in-

tended for use in conjunction with the operational control block MECH_CTL.

shown in Fig. 4.11 and Table 4.3, and an external timer of the IEC 61499-1

E_DELAY type [4.2]. The function block’s algorithms and the informal semantics

of its inputs and outputs are shown in Table 4.4.

(a)

(b)

Fig. 4.12. A basic function block for diagnostics. (a) Interface. (b) Execution control chart

Table 4.4. Partial textual declarations for the MECH_DIAG function block type.

(a) Interface declarations. (b) Algorithms

(a)

EVENT_INPUT

 CMD WITH FWD, REV, DTF, DTR; (* Motion Command *)

 SENSE WITH HOME, END; (* Sensor Change Notification *)

 CLK; (* External Timer Expired *)

END_EVENT

EVENT_OUTPUT

 IND WITH DIAG; (* Diagnostic Indication *)

 START WITH DT; (* Start External Timer *)

 STOP; (* Stop External Timer *)

END_EVENT

VAR_INPUT

 FWD : BOOL; (* Move in HOME -> END direction *)

 REV : BOOL; (* Move in END -> HOME direction *)

 DTF : TIME := t#5s; (* Maximum HOME -> END delay *)

 DTR : TIME := t#3s; (* Maximum END-> HOME delay *)

 HOME : BOOL; (* Tool at HOME position *)

 END : BOOL; (* Tool at END position *)

END_VAR

VAR_OUTPUT

 DIAG : WSTRING; (* Diagnostic String *)

 DT : TIME; (* Delay Period for External Timer *)

END_VAR

(b)

ALGORITHM ADVANCE IN ST :

DT:=DTF;

END_ALGORITHM

ALGORITHM RETRACT IN ST :

DT:=DTR;

END_ALGORITHM

ALGORITHM AERR IN ST :

DIAG:="TIMEOUT_ADVANCING";

END_ALGORITHM

ALGORITHM RERR IN ST :

DIAG:="TIMEOUT_RETRACTING";

END_ALGORITHM

4.4.6 Functional Composition

IEC 61499 provides for the construction of IP through the reuse and functional

composition of lower-level encapsulated IP. This is done through the construction

of composite function block types, whose bodies consist of networks of intercon-

nected lower-level component function blocks. The execution control of the com-

posite function blocks in an instance of this type is performed through the propa-

gation of input events via the event connections of these networks. Therefore, a

function block of this type does not directly utilize an ECC for execution control.

 (a)

(b)

Fig. 4.13. A composite function block. (a) Interface. (b) Body

As an example of such encapsulation, consider the fact that the control and di-

agnostic functions for the bidirectional mechanism described earlier are closely re-

lated. Hence, it adds value for such functions to be “packaged” together in a com-

posite function block as illustrated in Fig. 4.13. This provides the potential to

make the mechanism and its associated control device more “intelligent”, i.e. both

automatically operating and self-diagnosing.

4.4.7 Human Interface Functions

Human interface services provided by an underlying operating environment may

be encapsulated in IEC 61499 service interface function blocks. These blocks in

turn may be combined into composite function blocks to deliver an appropriate set

of human interface elements for a particular application. For instance, Fig. 4.14

shows the encapsulation of an appropriate set of human interface elements for the

cyclic operation of the bidirectional mechanism described above.

(a)

(b)

Fig. 4.14. A composite human-interface function block. (a) Display and functional

interface. (b) Body

Modeling, Simulation and Animation Functions

Modifications to the classical Model/View/Controller (MVC) design pattern [4.6]

have been proposed [4.10] to permit the use of IEC 61499 for the purposes of

modeling and simulation of intelligent devices and systems, and animated display

of the results of such simulations. Inclusion of Diagnostic (D) and Adapter (A) el-

ements leads to a proposed MVCDA design pattern.3

More recent experience4 has indicated that a functional partitioning into Mod-

el/View/Adapter (MVA) and Control/Diagnostic/Adapter (CDA) groupings is

more advantageous in the development and debugging of LLC systems. This mod-

ified design pattern is accordingly denoted MVA/CDA. The advantages of this

partitioning are seen particularly in managing the transition from simulated to ac-

tual physical systems.

Figure 4.15 shows a composite function block type capable of simulating the

operation of the bidirectional mechanism shown in Fig. 4.8. This utilizes standard

component function blocks defined as specified in Annex D of IEC 61499-1 [4.2],

in addition to a specialized service interface function block type (DRIVE) for sim-

ple motion simulation.5 Table 4.5 provides documentation of the inputs and out-

puts of this composite function block type.

3 See http://www.holobloc.com/doc/despats/ for more extensive descriptions of the use of

design patterns for IEC 61499.

4 The author is indebted to Mr. Franz Auinger and Mr. Werner Rumpl of Profactor GmbH,

Steyr, AT for their demonstration of the benefits of the MVA/CDA design pattern.

5 See http://www.holobloc.com/doc/despats/mvc/DRIVE.htm for documentation of the

DRIVE function block type.

 (a)

(b)

Fig. 4.15. A simulation model of the bidirectional mechanism. (a) Interface. (b) Body

Table 4.5. Interface declarations for the MECH_MDL function block type

EVENT_INPUT

 INIT WITH VF, VR, DT, HU, EL;

 CMD WITH FWD, REV; (* Motion command *)

 FLT WITH FAULT; (* Change in FAULT status *)

END_EVENT

EVENT_OUTPUT

 INITO WITH POS, HOME, END;

 INDP WITH POS; (* Position change *)

 INDS WITH HOME, END; (* Sensor change *)

END_EVENT

VAR_INPUT

 FAULT : BOOL; (* 0=Enable,1=Simulate Fault(pause) *)

 FWD : BOOL; (* Move Forward at VF *)

 REV : BOOL; (* Move Back at VR *)

 VF : INT := 20; (* Forward speed in percent/sec *)

 VR : INT := 40; (* Reverse speed in percent/sec *)

 DT : TIME := t#250ms; (* Simulation clock interval *)

 HU : UINT := 10; (* Upper(advancing)limit of HOME LS *)

 EL : UINT := 90; (* Lower(retracting)limit of END LS *)

END_VAR

VAR_OUTPUT

 POS : UINT; (* Position, 0->100% *)

 HOME : BOOL := true; (* HOME position, 0->HU *)

 END : BOOL; (* END position, EL<-100 *)

END_VAR

Figure 4.16 illustrates the combination of the MECH_MDL function block de-

scribed above with an XBAR_VIEW service interface function block displaying

the progress of the simulation. Table 4.6 provides a description of the

XBAR_VIEW inputs. A typical appearance of the XBAR_VIEW element is

shown in Fig. 4.17. Note the small colored circle at the upper left of the display.

The user can click on this sub-element to toggle the FAULT output; this variable

is used by the MECH_MDL function block to stop motion, thus simulating a sim-

ple fault. The colored circle changes from red when FAULT is true to green when

FAULT is false, giving the user some feedback on the simulated FAULT state.

 (a)

(b)

Fig. 4. 16. Composite function block for simulation and display of the

bidirectional mechanism. (a) Interface. (b) Body

Fig. 4. 17. Appearance of the XBAR_VIEW element.

Table 4.6. Partial interface declarations for the MECH_MV function block type

WKPC : COLOR := cyan; (* Workpiece Color *)

BKGD : COLOR := blue; (* Transfer Bar Color *)

LEN : UINT; (* Bar Length in Diameters *)

DIA : UINT; (* Workpiece diameter *)

DIR : UINT; (* Orientation:0=L/R,1=T/B,2=R/L,3=B/T *)

Adapter interfaces can be used to simplify the interconnection of control and

diagnostic elements with simulation and display elements, and to facilitate the

conversion from simulated to physical devices. The convention is that addition of

adapters to a Model/View (MV) element converts it to a Model/View/Adapter

(MVA) element, and addition of adapters to a Control/Diagnostic (CD) element

converts it to a Control/Diagnostic/Adapter (CDA) element. Figure 4.18 illustrates

the application of this principle to the previously developed MECH_MV and

MECH_CD function block types.

(a)

(b)

Fig. 4. 18. Addition of adapter interfaces. (a) External interface. (b) Body

4.4.9 System Configurations

A simple system configuration for testing the combined MECH_MVA and

MECH_CDA functionality is shown in Fig. 4.19. This system contains a single

device of type FRAME_DEVICE, which in turn contains a single resource of type

PANEL_RESOURCE. These elements encapsulate the functionality of the classes

Frame and Panel, respectively, in the Java AWT user interface [4.11]. The re-

source is populated with instances of MECH_CDA, MECH_MVA and associated

user interface elements. An instance of the IEC 61499 standard type E_RESTART

is used for initialization.

The appearance of the resulting user interface is shown in Fig. 4.20, and the

composite user interface function block DIAG_HMI is shown in Fig. 4.21.

 (a)

(b)

(c)

Fig. 4. 19. A simple system configuration. (a) System view. (b) Device view.

(c) Resource view

(a)

(b)

Fig. 4.20. The user interface to the simulation. (a) Normal operation. (b) Faulted operation

4.4.10 Communication Functions

Annex F of IEC 61499-1 [4.2] provides informative definitions for generic service

interface function blocks to the most commonly used communication services in

LLC, namely broadcast PUBLISH/SUBSCRIBE and one-to-one

CLIENT/SERVER connections. In addition, IEC 61499-1 Annex F defines ASN.1

abstract syntax [4.12], and basic [4.13] and compact encoding rules for the IEC

61131-3 [4.7] elementary and derived data types used in IEC 61499.

Since this information is not normative, additional technical agreements, e.g.

[4.15], must be employed to ensure interoperability of devices using these service

interfaces.

(a)

(b)

Fig. 4.21. A human interface for diagnostic messages. (a) Functional interface. (b) Body

4.4.11 Resource and Device Type Specifications

IEC 61499 provides for the definition of device types and resource types, for in-

stance the previously illustrated FRAME_DEVICE and PANEL_RESOURCE

types, respectively. Resources may be considered as providing “plug-in module”

functionality within devices. To illustrate this point, consider the MECH_PNL re-

source type shown in Fig. 4.22. Note that the only interface defined for such types

is a set of input variables that may be used for configuring instances of the type.

Note also the provision of communication service interface function blocks to es-

tablish connectivity to the “outside world”:

 An instance of the type SUBSCRIBE_1 receives the START event and value of

the SINGLE variable for the MECH_CDA instance.

 An instance of the type SUBSCRIBE_0 receives the ESTOP event for the

MECH_CDA instance.

 An instance of the composite DIAG_PUB type defined in Fig. 4.23 is used to

publish the diagnostic information from the MECH_CDA instance. This

publiched information is received by instances of the DIAG_SUB type also

shown in Fig. 4.23.

(a)

(b)

Fig. 4.22. A resource type definition. (a) Configuration interface. (b) Body

(a)

(b)

Fig. 4.23. Composite communication service interface types. (a) Functional interfaces.

(b) Bodies

The system configuration shown in Fig. 4.24 presents a simple example of the

integration of multiple distributed resources. The use of a grid layout illustrates

the use of a device as a “rack” or “manifold” for multiple intelligent

electomechanical devices, each of which is represented as an IEC 61499 resource

within the manifold.

In this distributed system configuration, the operator interface is represented as

a separate IEC 61499 device. Since the PUBLISH and SUBSCRIBE service inter-

face function blocks in this implementation utilize multicast communications, a

single operator interface can be used to control the operation of and receive diag-

nostic messages from multiple intelligent electromechanical devices of the same

IEC 61499 resource type (in this example, the instances MECH1 and MECH2 of

the MECH_PNL resource type in the MANIFOLD device). The

OPERATOR.DISPLAY resource of this system configuration is shown in Fig.

4.24d.

(a)

(b)

(c)

Fig. 4.24. A distributed system configuration. (a) System view. (b) MANIFOLD device

view. (c) MANIFOLD.MECH2 resource view. (d) OPERATOR.DISPLAY resource view

Figure 4.25 shows the appearance of the operator interface, and of the manifold

with two simulated electromechanical devices in a 2-row by 1-column grid, for the

system configuration given in Fig. 4.24. Figures 4.25b,c show that the operator in-

terface can receive error messages from either of the simulated electromechanical

devices. Physical or simulated devices can easily be added to this system and be

compatible with the same operator interface, as long as such devices receive their

operative commands and send their diagnostic messages through the same UDP

multicast socket addresses (for instance, they may receive the ESTOP command

via a SUBSCRIBE_0 block with UDP socket address 225.0.0.1: 1025).

(a)

(b)

(c)

Fig. 4.25. The user interface to the simulation. (a) Normal operation. (b) MECH1 fault.

(c) MECH2 fault

4.4.12 Software Portability

Portability of data types and other library elements (adapter types, function block

types, resource types, device types and system configurations) is achieved in IEC

61499 via the use of XML [4.14] documents for exchange of library elements

among software tools. The XML Document Type Definitions (DTDs) are given in

IEC 61499-2 [4.3].

Fig. 4.26. An IEC 61499-2 compliant software tool.

The user interface of a prototype software tool6 complying with the provisions

of IEC 61499-2 is shown in Fig. 4.26. A human-readable textual representation of

the library element being edited (in this case the system configuration previously

shown in Fig. 4.24) is shown in the lower pane of the tool, in the syntax defined in

IEC 61499-1. When a system configuration is being edited, the navigation tree in

the upper left panel of this tool reflects the system/device/resource hierarchy of the

IEC 61499 architecture, which is also reflected in the tree structure of the corre-

sponding XML document. In this example, the OPERATOR.DISPLAY resource

of the system configuration shown in Fig. 4.24 has been selected.

6 Available at http://www.holobloc.com.

4.4.13 Device Configurability

To facilitate the configurability of devices and resources, subclause 4.3 of IEC

61499-1 [4.2] defines a management service interface function block type with

standardized management commands for the dynamic creation and deletion of

managed objects such as function block instances and event and data connections.

However, the encoding of management commands and responses as well as the

implementation of messaging services for remote configuration is given in non-

normative Annexes of IEC 61499-1. Hence, as in the case of communication ser-

vices, additional technical agreements must be employed to ensure configurability.

On the basis of practical experience, the previously mentioned technical agree-

ment for feasibility demonstrations [4.15] proposes the use of an XML [4.14]

DTD for encoding of management commands and responses. This agreement also

specifies the combination of the normal IEC 61499 CLIENT/SERVER communi-

cation with the management service interface function block, to achieve configu-

rability by any remote software tool or agent capable of encoding and decoding

the appropriate XML commands and responses over a TCP/IP socket connection.

This management service architecture is encapsulated in the device management

kernel function block type, illustrated in Fig. 4.27.

(a)

(b)

Fig. 4.27. Device management kernel. (a) Interface. (b) Body

4.4.14 LLC Architecture: Conclusion

Table 4.7 shows the partitioning of the major holonic system functions of autono-

my and cooperation between the architectural levels of low-level control (LLC)

and high-level control (HLC). From the preceding material in this section it can be

seen that the IEC 61499 architecture addresses all of the LLC requirements as de-

fined in Section 4.2. The extent to which this architecture can be used to address

the remaining HLC requirements is addressed in the following section.

Table 4.7. Partitioning of holon functionality

Function Architectural Level

Autonomous:

 Task planning

 Task execution

 Fault detection

 Fault recovery

HLC

LLC

LLC

LLC/HLC

Cooperative:

 Task scheduling

 Task coordination

 Fault detection

 Fault recovery

HLC

LLC/HLC

HLC

HLC

4.5 High-Level Control Architecture

As shown in Table 4.7, the HLC architecture addresses the functions associated

with the domain of inter-holon cooperation, including negotiation and coordina-

tion of mutually agreed tasks and mutual action to recover from operational faults.

Also included in this level of the HMS architecture are those intra-holon aspects

of autonomous task planning and sequencing that contribute to the cooperative ac-

complishment of manufacturing tasks beyond the scope of LLC functionality.

4.5.1 HLC Structure

The overall structure of the HLC architecture is shown schematically in Fig. 4.28.

HLC functions are performed within one or more cooperation domains which co-

exist with and are interfaced to the LLC functions of the real-time control domain.

These HLC functions are built on an underlying set of cooperation communication

services. The partitioning of functions within a cooperation domain is shown in

Table 4.8.

Other chapters of this book provide further details on the requirements and im-

plementation of HLC functions.

Fig. 4.28. High-level control architecture

Table 4.8. Partitioning of HLC functions

Module Functions

CDI (Cooperation Domain Interface) Locate, join, leave CDs

Offer and find services (“Yellow Pages”)

Communicate with other agents

CM (Cooperation Manager) Negotiate ontologies

Maintain knowledge bases

Negotiate tasks and schedules

Generate/update LLC configurations

Coordinate task performance

FBM (Function Block Manager) Manage LLC configuration

4.5.2 LLC/HLC Integration

In accordance with the Open Systems Interconnection (OSI) model [4.16], the

layered “onion skin” architectural models shown in Figs. 4.3 and 4.28 lead to the

appearance of “service stacks” within individual holonic devices. Each layer of the

stack provides value-added services to the layer above by utilizing the services of

the layer below to interact with its distributed peers within the same layer. As

shown in Fig. 4.29, the LLC and HLC stacks coexist within the same device, with

the FBM (function block management) services providing the interface between

the LLC and HLC stacks.

Fig. 4.29. LLC/HLC integration

4.5.3 Application of IEC 61499 to LLC/HLC integration

Since the proposed HLC architecture utilizes a layered service model, IEC 61499

service interface function block types can be used to model the encapsulation and

integration of the services described in Table 4.8. Thus, an instance of the

HMS_KERNEL type shown in Fig. 4.30 can be used in place of the FB_KERNEL

type shown in Fig. 4.27 to transform an IEC 61499-compliant LLC device into a

holonic device, provided that the device has sufficient resources to support the ad-

ditional functionality. It is expected that the DEV_MGR functionality can be re-

used without modification, while the HMS_CM and HMS_CDI types will provid-

ed interfaces to the cooperation management (CM) and cooperation domain

interface (CDI) services described above.

 (a)

(b)

Fig. 4.30. The holonic kernel. (a) Interface. (b) Body

4.6 Conclusion

It has been shown that devices and software tools compliant with the IEC 61499

series of specifications [4.1, 4.2] and associated techical agreements are capable of

meeting all the requirements for low-level control and its integration with high-

level control functions in a holonic systems architecture. The LLC architecture has

been extensively demonstrated in practical examples. The implementation of HLC

functions within the IEC 61499 framework and their integration with LLC func-

tions in practical physical equipment remain a topic of ongoing research.

References

[4.1] H. Shapiro and C. Varian:: Information Rules: A Strategic Guide to the Network

Economy, Harvard Business School Press, Boston (1999).

[4.2] International Electrotechnical Commission: Function Blocks, Part1 – Architecture,

IEC PAS 61499-1, Geneva (2000).

[4.3] International Electrotechnical Commission: Function Blocks, Part 2 – Software tool

requirements, IEC PAS 61499-2, Geneva (2001).

[4.4] Foundation for Intelligent Physical Agents: FIPA Abstract Architecture Specification,

http://www.fipa.org/specs/fipa00001/ (2001).

[4.5] M.Fletcher, E. Garcia-Herreros, J.H. Christensen, S.M. Deen and R. Mittmann: “An

Open Architecture for Holonic Cooperation and Autonomy”, in 11th International

Workshop on Database and Expert Systems Applications (DEXA 2000), IEEE Com-

puter Society, New York (2000).

[4.6] B.P.Douglass: Real-Time UML: Developing Efficient Objects for Embedded Systems,

Addison Wesley Longman, New York (1997).

[4.7] International Electrotechnical Commission: Programmable controllers, Part 3 – Pro-

gramming languages, IEC 61131-3, Geneva (1993).

[4.8] R.W. Lewis: Modelling control systems using IEC 61499, Institution of Electrical En-

gineers, Stevenage (2001).

[4.9] R.W. Lewis,: Programming industrial control systems using IEC 61131-3. Institution

of Electrical Engineers, Stevenage (1995).

[4.10] J.H. Christensen: “Design patterns for systems engineering with IEC 61499”, in

Fachtagung Verteilte Automatisierung – Modelle un Methoden fuer Entwurf,

Verifikation, Engineering und Instrumentierun, ed. Ch. Doeschner, Otto-von-

Guericke-Universitaet, Magdeburg (2000).

[4.11] M. Campione and K. Walrath: The Java Tutorial, 2nd Edition, Addison-Wesley,

New York (1998).

[4.12] International Electrotechnical Commission: Information technology – Open Sys-

tems Interconnection – Specification of Abstract Syntax Notation One (ASN.1),

ISO/IEC 8824, Geneva (1990).

[4.13] International Electrotechnical Commission,: Information technology – Open Sys-

tems Interconnection – Specification of Basic Encoding Rules for Abstract Syntax No-

tation One (ASN.1), ISO/IEC 8824, Geneva (1990).

[4.14] W3 Consortium: eXtended Markup Language (XML) Specification,

http://www.w3c.org/TR/1998/REC-xml-19980210 (1998).

[4.15] Technical Agreement for IEC 61499 Feasibility Demonstrations,

http://www.holobloc.com/doc/ita/index.htm (2002).

[4.16] International Organization for Standardization: Information technology – Open

Systems Interconnection – Basic Reference Model: The Basic Model, ISO/IEC 7498-1,

Geneva (1994).

