
An Open Architecture for Holonic Cooperation and Autonomy

M. Fletcher
2

 E. Garcia-Herreros
3
 J.H. Christensen

1
 S.M. Deen

2
 R. Mittmann

3

1
 Rockwell Automation, 24800 Tungsten Road, Euclid, OH 44121, USA. JHChristensen@ra.rockwell.com

2
Computer Science Dept. University of Keele, Staffs. ST5 5BG, UK. {deen, martyn}@cs.keele.ac.uk

3
Softing, Richard Reitzner Allee 6, Haar, Munich 85540, Germany. {gh, Rainer.Mittmann}@softing.com

Abstract

The paper examines some issues relating to an open

architecture for holon cooperation and autonomy. We

identify the requirements of a holonic system architecture

and discuss the merits of our approach in comparison with

classic agent-based models. A suitable architecture to

satisfy these requirements is also presented, together with a

discussion of the holonic kernel needed to support

distributed holonic control. The material presented here is

based on results from the international programme on

Holonic Manufacturing Systems (HMS).

1 Introduction

Holonic Manufacturing Systems have been proposed by the

HMS Consortium [1] as a way to meet the ever-increasing

needs for robustness to disturbances, adaptability and

flexibility to rapid change, and efficient use of available

resources on the factory floor of modern manufacturing

enterprises. These systems in turn can lead to the

realization of the "agile manufacturing" vision, where

"reprogrammable, reconfigurable, continuously changeable

production systems, integrated into a new information

intensive manufacturing system, make the lot size of an

order irrelevant." [21]

To facilitate the widespread adoption and deployment of

HMS technology, a comprehensive architecture is required.

Such an architecture must provide a framework for the

unambiguous specification of the structure and relationship

among functional units (holons) in the system. In

particular, the architecture must enable the

accomplishement of the characteristics of:

- autonomy: Each holon must be able to create, control

and monitor the execution of its own plans and/or

strategies, and to take suitable corrective actions

against its own malfunctions.

- cooperation: Holons must be able to negotiate and

execute mutually acceptable plans and take mutual

actions against malfunctions.

- openness: The system must be able to accommodate

the incorporation of new holons, the removal of

existing holons, or modification of the functional

capabilities of existing holons, with minimal human

intervention, where holons or their functions may be

supplied by a variety of diverse sources.

In this paper, we propose an open architecture for holonic

systems to meet these requirements, based on a number of

evolving public standards.

2 State of the Art

A Holonic Manufacturing System (HMS) utilizes

engineering paradigms including the Function Block

Architecture [2] and multi-agent systems to guarantee

predictability and termination during task execution. Multi-

agent systems originate from research in Distributed

Artificial Intelligence (DAI) [3] and use mentalistic

approaches to problem solving by imitating human

interaction. These approaches are often based on speech

acts or beliefs, desires and intentions. Such models are

inherently unpredictable and may be unstable in real-world

manufacturing where criteria such as fault-tolerance and

reconfiguration are paramount.

The Speech Act theory of Searle [4] encouraged multi-

agent researchers to develop inter-agent cooperation

protocols, treating communication as a type of action to be

incorporated into planning and reasoning processes.

Primitives inspired from speech act theory include propose,

refuse, respond and inform; these have been used as a basis

for many multi-agent prototypes.

Belief, desire and intention (BDI) was introduced as the

foundation for single-agent architectures by Bratman et al

[5] and was developed further by Rao and Georgeff [6].

Since its conception, the BDI scheme has become a solid

foundation for research into multi-agent architectures. The

BDI model defines an agent’s internal processing through a

set of mental categories with a control framework for the

rational selection of action plans to satisfy goals. At present

there are several multi-agent architectures based on various

aspects of speech act and BDI principles. These include the

Cosy architecture of Haddadi et al [7], INTERRAP from

Mueller [8], the GRATE model from Jennings [9] and the

MECCA architecture from Steiner et al [10]. These

architectures use artificial intelligence to control agents’

behaviour and model agent coordination using human

social metaphors. However none addresses the problems of

distributed control and cooperation within manufacturing.

During the 1990s, DARPA brought about the introduction

of a LISP-based environment that integrates a knowledge

interchange format (KIF) [11] and a knowledge querying

and manipulation language (KQML) [12]. These formats

are becoming the de facto standards for exchanging

knowledge between agents. Thus FIPA [13] (foundation for

intelligent physical agents) has defined an agent

architecture and message exchange formats based on the

aforementioned BDI and KQML ideas respectively. The

HMS project does not intend to define new standards where

existing ones are sufficient. Hence holons pass messages

complying with the FIPA standard, however it is unclear

how the agent model can fulfill the architectural

requirements of the HMS project [14].

Recently there have been a number of papers that address

the closely related areas of agent-based and holonic

manufacturing. In [15], Parunak proposes a manufacturing

schedule and control testbed (MASCOT) as a virtual

factory in which agent ideas can be experimented with. The

PROSA architecture of Brussel et al [16] consists of three

types of basic holons: product, resource and order. These

holons are structured using the object-oriented concepts of

specialization and aggregation. Staff holons assist basic

holons by providing expert knowledge. The research group

headed by Norrie [17] is producing a considerable volume

of relevant material relating to the MetaMorph multi-agent

architecture, concept graphs and holon/human interaction.

As a consequence of work undertaken as part of the systems

engineering work-package of the HMS project, several

papers have been produced. Deen [18, 19] has produced

cooperation models whereby autonomous agents maintain

fault tolerance and task execution preferences without

getting into deadlocks. The temperature model of Fletcher

[20] provides algorithms to redistribute tasks throughout the

system, thus ensuring greater robustness and efficiency. In

this paper, we shall present an open architecture for holon

cooperation and autonomy, inspired by these multi-

agent/holon frameworks, and drawing from work done by

the authors in defining the function block architecture.

3 System Architecture

3.1 Holons

A manufacturing holon is an autonomous and cooperative

building block of a manufacturing system for transforming,

transporting, storing and/or validating information, and/or

physical objects. Therefore a manufacturing holon usually

comprises knowledge and software components with an

(optional) hardware component. Functionally, a holon may

be considered to comprise an intelligent control system

(head) and a processing system (base).

The elements of the holon’s Intelligent Control System

(ICS) are shown in Figure 3.1.

Process/

Machine

Control

(PMC)

Human

Interface

(HI)

Inter-

Holon

Interface

(IHI)

Process/

Machine

Interface

(PMI)

Figure 3.1 - Structure of the Holon Intelligent Control

System (head).

 The process/machine control PMC responsible for

execution of the control plan for the process being

controlled. The control block may include besides

traditional control algorithms rule-based reasoning,

fuzzy logic, and neural nets

 The process/machine interface PMI provides the

logical and physical interface to the processing system

via a suitable communication network (e.g. Fieldbus,

Profibus or TCP/IP based, wireless). Real-time

communication is supported through a Real-time layer.

The PMI may itself contain intelligent elements such as

e.g. self-diagnosis, process model-oriented diagnosis,

etc.

 The human interface HI comprises the interfaces to

humans such as operators, supervisors, maintenance

personnel, and process engineers. It may include front

ends, diagnostic and explaining components

 The inter-holon interface IHI handles the inter-holon

communication. It also comprises the elements to

permit the holon to negotiate and cooperate with other

holons. The inter-holon interface also provides

facilities to support the cooperation domain interfaces

through a Cooperation Communication System or

Layer.

Focusing on the internal organization, a holon consists of

the intelligent control system (ICS), consisting of the

control and regulation components, and the processing

system. The processing system consists of all processing

components necessary to realize a manufacturing activity as

transforming, transporting, storing and/or validating

information and/or physical objects (e.g. database

management system). The ICS is responsible for the

interacting behaviour of the internal components, as well as

the set of procedural rules and decision-making functions

that govern the interaction of the components. In this way

the ICS enables the holon to offer manufacturing skills as

an autonomous subsystem in coordination with the

environment and acquaintance holons. The processing

system is responsible for the manufacturing functionality

according to rules and operating strategies imposed by the

ICS.

3.2 Cooperation Domains

A Cooperation domain is considered as a logical space in

which holons communicate and operate, that provides the

context where holons may locate, contact and interact with

each other. It is possible that a cooperation domain does not

exist by itself, and that all cooperation domains may be

dynamically generated by the operations of holons’

constituent parts. The following premises are valid for a

cooperation domain: A holonic system contains at least one

cooperation domain. A holon is a member of one or more

cooperation domains. A cooperation domain has one or

more member holons.

A cooperation domain comprises the following elements

 Data structures into which holons may write and read

knowledge which controls cooperation, e.g. querying

the value of a variable that indicates the status of a joint

task. .

 Facilities to pass transient messages between holons

and the cooperation domain. If the cooperation domain

and the holons involved within that cooperation

domain are located on the same device then message

passing can be achieved by shared memory, else the

messages must be encoded as packets and passed

through a communication network.

 Decision making mechanisms to support holons in their

activities, such as task planning, negotiation,

information exchange and so forth

 Techniques and rules to decompose and allocate tasks

among compound holons, as well as facilities to

schedule and control tasks within a holon

 Facilities to monitor the status of a distributed task, and

schedule/control all actions within this task

Within a cooperation domain, constituent holons

coordinate, through their respective views of the holarchy,

to generate and execute task plans. A holon is mapped onto

one or more holonic resources within the system, where at

least one such resource must provide cooperation domain

management services. Within a cooperation domain,

information-processing elements of holons interact with

each other to accomplish a specified task.

A holon may be composed of a set of other holons in a

recursive containment hierarchy/heterarchy (a holarchy) to

form a compound or parent holon. In this case, lower level

holons included within the holon cooperate with each other

through their respective cooperation domains to generate

task plans and to carry out these tasks. In the case where a

holon does not include lower level holons (namely an

atomic or child holon), the internal cooperation domain

represents the holon’s private autonomous functions and

information. The architectural structure of the cooperation

domain described here is founded upon properties and

behaviour of the holon components contributing to the

cooperation domain.

Figure 3.2 - Holarchy of holons and its cooperation

domains

Inside a cooperation domain, we envisage two types of

cooperation among autonomous holons. In simple

cooperation, an autonomous system is committed to answer

queries from another holon, even if the response is non-

cooperative, e.g. access denied. All holons posses this

ability. A complex cooperation achieves a joint goal, for

instance agreeing a mutual plan of executing tasks for

solving a distributed problem. We present a framework for

such complex inter-holon cooperation in a later section,

which is based on basic cooperation domains, thus

providing scalability, flexibility and so simplifies the

holonic architecture.

The structure created by this task holarchy is dynamic while

the relationships among holons form a more static

configuration. Holons respond to task requests from their

cooperation domains so that interaction is carried out or

new tasks are generated according to these responses. If a

task cannot be executed due to a lack of equipment or skills

then the task may be altered or a new component could be

introduced, under the control of the corresponding minder,

into a holon to satisfy the domain's requirements. As a

result, the internal structure of the holarchy represented by

this cooperation domain is altered through generation of a

new compound holon.

3.3 Open Interfaces

Figure 3.3-1 illustrates the characteristics that must be

achieved at theinterfaces among engineering tools (T) and

holons (H) in order to achieve the architectural goal of

openness, namely: portability of software elements at the

T/T interface; configurability of holons at the T/H interface;

and interoperability of holons at the H/H interface.

Engineering Tool 1 Engineering Tool 2

Holon 1 Holon 2
interoperability

Sensor/

Actuator

Link #1

Sensor/

Actuator

Link #2

configurability

portability

…other tools and holons...

Figure 3.3-1 - Open Interface Characteristics

The IEC 61499 standard[1] achieves these interface

characteristics by the following means:

- Software portability is achieved through standardized

semantics and XML [22] syntax for exchange of

software library elements among software tools.

- Holon configurability is achieved through standardized

semantics and syntax for configuration commands and

responses, which may be exchanged between

engineering tools and holons, among holons, or within

a holon.

- Holon interoperability is achieved through

standardized syntax and semantics for exchange of

information among holons in real time.

The fundamental building block of functionality in the IEC

61499 architecture is the function block. As illustrated in

Figure 3.3-2, IEC 61499 defines a graphical representation

and textual syntax for representation of the following

aspects of function block types (classes):

- Event and data interfaces;

- An event-driven state machine for the control of the

execution of the function block's algorithms and

issuance of resulting output events.

In addition, IEC 61499 provides graphical representations

and textual syntax for specifying the sequence of service

primitives and their association with events and data when

the function block represents an interface to services such

as communications, machine or process input/output, and

human interface elements. It is this capability which

enables all elements shown in Figure 3.1 (HI, PMC, PMI

and IHI) to be implemented as interconnected instances of

IEC 61499 function block types. IEC 61499 also provides

graphic representations and textual syntax for the

construction of such function block networks for the

configuration of holonic control devices.

(Scheduling, communication mapping, process mapping)

Algorithms

Type identifier

(hidden)

Internal data

(hidden)

Resource capabilities

Data outputsData inputs

Event outputsEvent inputs

Instance identifier

Control
Execution

(hidden)

Data flow

Event flow Event flow

Data flow

Figure 3.3-2 - Open Interface Characteristics

Finally, IEC 61499 defines the interface to device

management services, such as the creation and

interconnection of function block instances, as simply

another type of service interface function block. It is this

characteristic of the IEC 61499 architecture which permits

holonic controllers to be dynamically reconfigured in

response to task negotiations, as discussed below.

4 Holonic Kernel

The holonic kernel (HK) is a layered framework of IEC

61499 function blocks. A holonic kernel resides on each

holonic resource and facilitates holon management through

the provision of suitable services. We assume that a holon

is dynamically created as a heterarchy of function blocks

upon one or more holonic resource(s). This formation must

satisfy the requirements demanded by that holon’s

autonomy, cooperation and openness roles. Contrary to

traditional manufacturing paradigms, holons are managed

in a distributed fashion through interaction with their

respective holonic kernels. The holonic kernel assists the

holons by offering services including:

 Selecting appropriate function blocks to provide the

autonomous skills needed to perform a given task.

 Managing data/event flows between function blocks.

 Supporting interaction and negotiation protocols etc

with other holons through cooperation domains.

 Access to data/knowledge bases via suitable interfaces.

 Assisting in task decomposition, information filtering,

creating and validating schedules, and handling

interrupts.

These are essential services for achieving the necessary

flexibility of a HMS as discussed earlier. Structurally, the

holonic kernel is a connected group of four service interface

function blocks:

 Function Block Manager (FBM) to support function

block administration (i.e. creating, configuring and

ultimately deleting function blocks) upon a resource.

 Coordination Manager (CM) to facilitate interaction

control (e.g. task decomposition, result aggregation,

planning and conflict resolution) both within the holon

and amongst other holons.

 Cooperation Domain Interface (CDI) gives interfaces

from holons to one or more cooperation domains for

transferring knowledge relating to tasks, ontologies etc.

 Data/Knowledge Base Interface (DKBI) to manage

information in the holon’s local repository.

The layered structure of a holonic kernel and the

relationships between these kernels are shown in Figure 4.1.

Figure 4.1 - Structure of the Holonic Kernel

The CDI supports holon interaction by:

 Arranging a holon’s contribution to every cooperation

domain it is simultaneously participating within.

 Exchanging knowledge as a consequence of executing

a given cooperation strategy.

 Representing the coordinated task using a suitable

schedule of atomic actions.

There is one CDI for every cooperation domain the holon is

participating within. Therefore the holonic control system

generates a heterarchy of CDI function blocks that reflects a

task decomposition structure and the holon’s relationships.

Each CDI can be implemented with varying degrees of

sophistication. This complexity reflects the design of the

cooperation domain, which can be either:

 A logical inter-connection structure that exists only

while holons exchange messages.

 Have data retention associated with coordinated actions

and performs processing (in conjunction with holons).

We assume a robust communication system enables holons

to pass messages through the cooperation domain. As

shown in Figure 4.2, a cooperation domain can be

constructed using services provided holonic kernels. Each

holon joins a cooperation domain by interacting with the

CDI and so creating appropriate SUBSCRIBE and

PUBLISH function blocks to acquire/present data from/to

each cooperation domain. The CM function block can then

use this cooperation domain and associated function blocks

to exchange relevant information with other holons. We

assume that a holon has one CM function block per

cooperation strategy that is being executed concurrently.

This is because the holon can perform:

 A negotiation strategy during task agreement.

 A coordinated scheduling strategy during planning.

 A conflict resolution strategy during task execution.

 A two-phase commit to ensure data consistency.

Each strategy exchanges knowledge and activity requests

via a single cooperation domain associated with the task.

Figure 4.2 - Creating a Cooperation Domain

Concentrating on the CDI, appropriate service primitives

are offered either to the holon or to the cooperation domain.

Such services can be invoked by passing events and data to

the CDI function block.

A UML specification of the CDI is given in Figure 4.3.

Figure 4.3 - UML Specification of CDI

Like other service interface function blocks, CDI maps

events and data (see Figure 4.4) to service primitives (see

Figure 4.5).

Figure 4.4 - Events and Data Interface to CDI.

Figure 4.5 - Service Sequences for CDI.

Developers can then implement the functionality of CDI to

satisfy these interfaces.

5 Conclusion and Future Work

The paper has presented an architectural model for building

holonic manufacturing systems using holons and

cooperation domains. We have illustrated how this

framework satisfies some of the requirements for agile,

customized and fault-tolerant environments that will typify

manufacturing in the 21
st
 Century.

Future work within the HMS programme is planned on:

 Automated application generation.

 Task/application reasoning and negotiation.

Acknowledgements

European authors wish to acknowledge that this material is

based on work supported by the European Union project

(EU IMS Project No: 26508) on Holonic Manufacturing.

References

[1] “The IMS (Intelligent Manufacturing Systems) project

on holonics is an international programme with

participation of major industries, academic institutes

and vendors. The programme is being supported by

USA, Canada, Europe, Australia and Japan.” Overview

at http://hms.ifw.uni-hannover.de/public/overview.html

[2] “Draft - Publicly Available Specification - IEC 61499:

Function Blocks for Industrial-Process Measurement

and Control Systems, Part 1 - Architecture, Part 2 -

Engineering Task Support,” International Electro-

technical Commission, Geneva, April 2000.

[3] “Open Information Systems Semantics for DAI”, C.

Hewitt, in AI Journal, January 1991.

[4] “Speech Acts”, J.R. Searle, published by Cambridge

University Press, 1969.

[5] “Plans and Resource Bounded Practical Reasoning”,

M.E. Bratman et al, in Computational Intelligence

(4:4), November 1988.

[6] “BDI Agents – From Theory to Practice”, A.S. Rao

and M.P. Georgeff, in Proceedings of the 1
st

International Conference on MAS, May 1995.

[7] “Communication and Cooperation in Agent Systems –

A Pragmatic Theory”, A. Haddadi, published by

Springer, October 1996.

[8] “The Design of Intelligent Agents”, J.P. Mueller,

published by Springer, May 1996.

http://hms.ifw.uni-hannover.de/public/overview.html

[9] “Controlling Cooperative Problem Solving in Industrial

Multi-Agent Systems using Joint Intentions”, N.R.

Jennings, in Artificial Intelligence (74:2), July 1995.

[10] “Understanding Cooperation – An Agent’s

Perspective”, D.D. Steiner and A. Lux, in Proceedings

of the 1
st
 International Conference on MAS, May 1995.

[11] “Knowledge Interchange Format Reference Manual”,

M.R. Genesereth and R.E. Fikes, Computer Science

Department, Stanford University, June 1992.

[12] “KQML – A Language for Protocol and Information

Exchange”, T. Finin and R. Fritzson, in Proceedings of

13
th

 International Workshop on DAI, September 1993.

[13] “Specification of Agent Architecture”, FIPA is a non-

profit organization with 35 members to define agent

standards, 1998.

[14] “Holonic Manufacturing Systems: Initial Architecture

and Standards Directions”, J.H. Christensen, in

Proceedings of the 1
st
 European Conference on Holonic

Manufacturing Systems, July 1994.

[15] “MASCOT: A Virtual Factory for Research and

Development in Manufacturing Scheduling and

Control”, H. Parunak, in Proceedings of Workshop on

Intelligent Scheduling in Manufacturing, January 1993.

[16] “Reference Architecture for Holonic Manufacturing

Systems: PROSA”, H.V. Brussel et al, in Computers In

Industry (37:3), March 1998.

[17] “Agent-Based Systems for Intelligent Manufacturing:

State of the Art Survey”, W. Shen and D.H. Norrie, in

Knowledge and Information Systems (1:2), May 1999.

[18] “A Fault-Tolerant Cooperative Distributed System”,

S.M. Deen, in Proceedings of the 9
th

 IEEE Workshop

on Database and Expert System Applications, August

1998.

[19] “A Theoretical Foundation for Cooperating Knowledge

Based Systems”, S.M. Deen and C.A. Johnson, in

Proceedings of 11
th

 International Symposium on

Methodologies for Intelligent Systems, June 1999.

[20] “Task Rescheduling in Agent-Based Manufacturing”,

M. Fletcher, in Proceedings of the 10
th

 IEEE Workshop

on Database and Expert System Applications, August

1999.

[21] "21st Century Manufacturing Enterprise Strategy: An

Industry-Led View," Iacocca Institute, 1991

[22] "eXtended Markup Language (XML) Specification,"

W3C Consortium, 1998.

