Design patterns for systems engineering with IEC 61499
James H. Christensen

ABSTRACT: The use of familiar design patterns can substantially reduce the time and cost of systems engineering with new technologies such as the function-block based, event-driven, distributed open Industrial Process Measurement and Control System (IPMCS) architecture proposed in IEC Project 61499. This paper first discusses the application of design patterns to those aspects of the new architecture that may present the most difficulty to practitioners of control system engineering. A new design pattern for distributed applications is introduced to systematize the task of system design in the IEC 61499 context. Additional examples are presented of mapping the well-known proxy and model/view/controller (MVC) design patterns to the IEC 61499 context. Illustrations will be presented of a prototype class framework and experimental systems engineering methodology using these design patterns. Based on this experience, recommendations will be made regarding desirable capabilities in software tools to support the systems engineering process for this new architecture.

KEYWORDS: object-oriented, design patterns, function blocks, IEC 61499, distributed control

Introduction

A previous paper
 described the background and basic concepts of the draft IEC 61499 standard
,
 for the application of function blocks in distributed industrial-process measurement and control systems (IPMCS). Several aspects of this standard are unfamiliar to most practitioners of control systems engineering, especially the ideas of distributed applications, event-driven execution control and service interface function blocks for communications, I/O and other operating system services.

The use of design patterns can simplify the job of becoming familiar with the application of these new concepts. A design pattern is defined
 as "the formalization of an approach to a common problem within a context". In this case the context is established by the architecture defined in IEC 61499-1. The common problems addressed in this paper are:

· distributing the function block instances in an application among devices and resources of an IPMCS, and configuring the appropriate communications service interface function blocks to maintain the event and data flows specified by the application;

· using service interface function blocks as proxies for remote functions in subnetworks which may not be IEC 61499-compliant;

· IPMCS modeling, simulation and testing in the IEC 61499 context through an adaptation of the well-known Model-View-Controller (MVC) design pattern.

Pattern 1: Distributed Application

This section proposes a design pattern to assist engineers in the configuration of distributed applications in the IEC 61499 architecture. The elements of this pattern are:

1. Function block types available to build an application to be distributed, along with device types and resource types available for system implementation.

2. Definition of the application(s) to be used to implement the required system functions.

3. The mapping of function block instances and their associated connections from the application to the appropriate resources.
4. The configuration of device instances and resource instances in the system.

5. The configuration and interconnection of communication service interface function blocks to implement the event connections and data connections of the application across resource boundaries.

The following example from Annex A of IEC 61499-2 illustrates the application of these elements. Consider a system in which ranges are to be sorted by sensing their position and color and diverting any which are too green, as illustrated in Figure 1.

[image: image1.wmf]Feed conveyor

Presence/

Color

 Sensor

Pneumatically

actuated

diverter

Accepted product

Rejected product

Figure 1 - Orange Sorting System

The function block types shown in Figure 2 are available for the implementation of this system. The ORANGE_SENSOR type implements a service interface for sensing the presence and condition of an orange on a conveyor, the FB_AND type implements a Boolean AND operation, and the SOLENOID type implements a service interface for the actuator of a simple solenoid valve.
[image: image2.png]EvenT

fim wira
wo|

ORANGE _SENSDR

EvenT
EvenT

REAL

ITHRESH PRESENT)
oreen|

BooL

BooL

[image: image3.png]EvenT —-[REa onF|-g—event
Fa_aND
BooL—8-in ouT[-S—B00L
[

[image: image4.png]EvenT

EvenT

BooL-

Figure 2 - Function Block Types

The device types shown below are available for implementation of this system. As shown in Figure 3(a), device type ORANGE_EYE contains an instance of the ORANGE_RES resource type, which in turn contains an instance of the ORANGE_SENSOR function block type, plus an instance of the PUBLISH_1 type to transmit a change in condition. This resource type also contains an instance of the E_RESTART type defined in Annex A of IEC 61499-1, interconnected to provide initialization of the other function block instances. The data outputs of the ORANGE_SENSOR block and the SD_1 input of the PUBLISH_1 block, and their corresponding event inputs and outputs, are left unconnected in order to allow application-specific logic to determine the value to be transmitted and the event to trigger the transmission.

As shown in Figure 3(b), device type SOLENOID_VALVE contains an instance of the SV_RESOURCE type, which in turn contains an instance of the SOLENOID function block type, plus an instance of the SUBSCRIBE_1 type to receive a command to change solenoid status. This resource type also contains an instance of the E_RESTART type, interconnected to provide initialization of the other function block instances.

a)
DEVICE_TYPE ORANGE_EYE
 RESOURCE R1 : ORANGE_RES

[image: image5.png]START SENSOR PUB
co g ol
wam o) —
sror I C

oranoe_senson Fusuisis

Erestam] fruesn rresenr o w

sreen o srarus|
o

 END_RESOURCE
END_DEVICE_TYPE

b)
DEVICE_TYPE SOLENOID_VALVE
 RESOURCE R1 : SV_RESOURCE

[image: image6.png]START SuB

co T W] vawe
sror JC
osscrset] [rouenom
e T R
o status
o1

 END_RESOURCE
END_DEVICE_TYPE

Figure 3 - Device Types

Figure 4 illustrates an application named SORT that can accomplish the required system functions with instances of the available function block types, and shows the mapping of the function block instances of the application onto instances of the available device types.

[image: image7.png]‘APPLICATION SORT
senson oate scTuaToR
T o) e ewf—fea o
o) 10 JC
vao| [soLenon
RANoE_sensoR int_our——n
rumesH eresentl —{ne i
oneen i
Cammunication Link |
3 SENSOR | / AcTuATOR |}
Ohance evf] [sorenow_vand]

Figure 4 - Application/Device Mapping

A set of device and resource configurations supporting the implementation of the SORT application would be as shown in Figure 5. Note that an instance of the FB_AND type has been added to the SENSOR.R1 resource to correspond to the GATE block of the SORT application. The specific mapping of function block instances from the SORT application to the corresponding resource configurations is given in Table 1.

a)
DEVICE SENSOR : ORANGE_EYE
 RESOURCE R1 : ORANGE_RES

[image: image8.png]START SENSOR PUB
o — W - wira
wae) rea o
srop oot arC

aravoe_senson] L—frea o] FusLisH T
Eorestan] oss-fruneon presenty] o a
oneenly | [Feaw] wssrfo srarus

s our oot

iz

 END_RESOURCE
END_DEVICE

b)
DEVICE ACTUATOR : SOLENOID_VALVE
 RESOURCE R1 : SV_RESOURCE

[image: image9.png]START SuB.

co T W] vawe
sror JC
osscrset] [rouenom
e T R
o srarus
o1

 END_RESOURCE
END_DEVICE

Figure 5 - Device and Resource Configurations

Table 1 - Function Block Instance Mapping

From Application
To Resource

SORT.SENSOR
SENSOR.R1.SENSOR

SORT.GATE
SENSOR.R1.LOGIC

SORT.ACTUATOR
ACTUATOR.R1.VALVE

The final step in completing the system configuration is to establish communication connections among resources to implement the corresponding event and data connections of the application. Comparison of Figure 5 with Figure 4 provides an illustration of the general rule that such connections can be established by analysis of the WITH statements of the corresponding function block types. In this example, it is apparent that instances of the PUBLISH_1 and SUBSCRIBE_1 function block types should be used to implement the connections implied by the CNF WITH OUT declaration of the FB_AND type and the REQ WITH IN declaration of the SOLENOID type.

Pattern 2: Proxy

The proxy pattern is described as one which "decouples clients from their servers by creating a local proxy, or stand-in, for the less accessible server. When the client needs to request a service from the server, such as retrieving a value, it asks its local proxy. The proxy can then marshal a request to the original server….
" One use for this pattern in the IEC 61499 context is to utilize service interface function blocks (SIFBs) as proxies for functions of devices that may not themselves be compliant to the standard.

Consider the example shown in Figure 6, where the operation of two machines must be coordinated, but the machine interfaces are located on incompatible sensor/actuator links. In this case, interoperation may be achieved through by using of two IEC 61499-compliant devices, each with its own special-purpose interface to the appropriate sensor/actuator link (or by a single IEC 61499-compliant device containing two such interfaces. The devices may then be populated with SIFBs that serve as local proxies for the actual interfaces located on the sensor/actuator links. Coordinated machine operations can then be achieved by the addition of appropriate application function block instances, data and event connections within each device, plus communication SIFBs to achieve the required event and data connections between the two devices. Note that communication SIFBs would not be required if all proxy SIFBs and application FBs could be co-located within a single resource of a single device.

[image: image10.wmf]Device 1

Device 2

Application FBs

Sensor/

Actuator

Link #1

Sensor/

Actuator

Link #2

Machine

#1

Machine

#2

Coordinated Operation

Proxy

SIFBs

Communication SIFBs

Figure 6 – Proxy Pattern
(Not shown: resources, event and data connections)
Pattern 3: Model-View-Controller (MVC)

The traditional MVC pattern
 was developed to address separation of concerns in user interfaces for object-oriented systems. In this pattern, the model contained data whose values were independent of their graphical representation; the view provided a specific textual or graphical rendering of some or all of the data in the model, and the controller managed the user interactions with the model and the view. This model can be adapted for use in the modeling, simulation and testing of industrial-process measurement and control systems (IPMCSs) in the IEC 61499 context by modifying these definitions as follows:

· Model: A function block that represents the time-dependent logical behavior of the system or device being controlled.

· View: A function block that represents the graphical display associated with one or more Model types.

· Controller: A function block that encapsulates the control functions to be performed on one or more instances of associated Model types, and presents appropriate event and data interfaces for integration of its functions with those of other Controller blocks.

Model, View, and Controller types will be represented as basic function block types in the IEC 61499 context. These functions can then be combined into various composite function block types, including diagnostic (D) functions and adapter interfaces (A) to simplify interconnections, as illustrated in the Unified Modeling Language
 (UML) class diagram in Figure 7.

[image: image11.png]MVCA_elerment

AdapterElement

MVCDA_element

Plug Socket
1 1.7
MVC_elernent ControllerElerment [1.~ MVCD_elerment
7o
1
1.7 .
<<Interface>>(DiagnosticElement
Equiprment
MY_element | [Senicelnterface

1

1
1

1

ModelElement

ViewElement

Figure 7 – MVCDA framework

Differences from the classical MVC framework

In the classical MVC framework, a Controller represents the functions that may be performed by a human interface element to modify the data in the Model or the appearance of the Model presented in the View. Since the Controller performs a different function in the present framework, user interaction is represented by a HMI (Human/Machine Interface) element, which is also a function block.

As shown in Figure 8(a), in the classical MVC framework the Model (e.g., a database or dynamic process model) notifies both the Controller and View elements when its data has changed. This results in the View updating its graphic representation of the Model and the Controller element notifying the user of the change.

In the present framework, as shown in Figure 8(b), the Model (a function block instance) also notifies the Controller and View elements (also function block instances) when its data has changed, e.g., via an event at its IND output along with associated data. However, in this case the Controller may take appropriate control actions and notify the Model to change some of its data (e.g., via a REQ input and associated data to the model), and may also notify the user of the change through an HMI element (also a function block instance). Note that in this framework, a change of Model data may cause two changes in View data: the first due to the initial data change in the Model, and the second caused by the feedback from the Controller. In the present framework, the Model (a function block instance) also notifies the Controller and View elements (also function block instances) when its data has changed, e.g., via an event at its IND output along with associated data. However, in this case the Controller may take appropriate control actions and notify the Model to change some of its data (e.g., via a REQ input and associated data to the model), and may also notify the user of the change through an HMI element (also a function block instance). Note that in this framework, a change of Model data may cause two changes in View data: the first due to the initial data change in the Model, and the second caused by the feedback from the Controller.

(a)
[image: image12.png]" Contioller

1: dataChanged - | Element
ged
Model
Element

g athanged

View
Element

(b)
[image: image13.png]Controler
i dathanged | “Blonert 4 datahanged
i

ol ["3 chargeDats

Eemert <
5 dataChanged
2 aata:hangh View

Element

Hilebmen]

(c)
[image: image14.png]doathanged 7

Senice

Trtetface

Controler
Element

2 changeData

S deleChenged

Hilslement]

Figure 8 – Effects of Model data change
(a) Classical MVC, (b) Modified framework; (c) Implementation

As shown in Figure 8(c), this framework allows the Model element to be replaced by a Service Interface element that implements the same interface as the Model element. This interface is represented generically in Figure 7 as an Equipment interface.

As shown in Figure 9(a), in the classical MVC framework user input is translated by the Controller element into either a command to the Model element to change its data, to the View element to change the way the data is displayed, or both. Note that a change to data in the Model may also result in a notification to the View as shown in Figure 8(a).

(a)
[image: image15.png]Model

T:changeDats | Element

Controler
Element

g iy

Vew
Element

(b)
[image: image16.png]1: changeData

HMlelement] — %
\Lz .
e ol
e || flenen
-

3 dataChanged

Figure 9 – Effects of user input
(a) Classical MVC, (b) Modified framework; (c) Implementation

As shown in Figure 9(b), in the present framework, user input from an HMI element (a function block instance) notifies the Controller element (also a function block instance) when its data has changed, e.g., via an event at its IND output along with associated data. In this case the Controller may take appropriate control actions and notify the Model to change some of its data, which may then also notify the View of the changed data. If the effects of the control actions are such as to cause additional changes in the Model data, this may result in additional notifications to the Controller and View elements.

In this framework, a View element may also contain HMI elements for user input to the Model, which may result in a notification from the View element back to the Model element, which in turn may notify the Controller of the associated data change. In the control system implementation, this notification would be built into the Equipment interface.

Engineering methodology
Steps 1-11 of the engineering methodology below has been found to be successful in accomplishing system design and simulation using the MVCDA design pattern.
 The final step of physical implementation has yet to be tested.

1. Start with a sketch of the machine or process to be controlled, along with a verbal description of the desired behavior. This may be included in a hypertext document with links to existing process specifications and CAD drawings, but should abstract such detailed information into a high-level view of the desired functionality.

2. From the sketch, develop and test a number of Views which are capable of presenting visually the essential information about the states of the controlled devices, e.g., the location of workpieces, the position of tools, the state of spindle motors, the temperature or level of liquids in a tank, etc.

3. Integrate the views into a static animation of the system to be controlled, and utilize the animation to develop descriptions of the desired operational sequences of the system under both normal and abnormal conditions.

4. For each view, develop and test a Model capable of simulating the dynamic behavior of the associated machine or process equipment in response to external stimuli and commanding the associated view to display the corresponding equipment states. Models should typically execute in their own threads of execution, e.g., in conjunction with external or internal timers or integrators. In many cases, models and their associated views may be available as part of simulation or animation applications external to the IEC 61499 engineering support system (ESS). In such cases, the ESS must provide the capability to interface to such models through appropriate service interface function blocks, which will be replaced by equivalent IEC 61499 service interfaces during system implementation.

5. Encapsulate each model and its associated view in a Model/View (MV) composite function block and test the resulting combination. Such blocks may encapsulate additional functions as necessary to present the logical interface to the equipment being modeled, including sensor or actuator interfaces, as well as variables necessary for parameterization of the view and for interconnection of simulated physical variables and events among models.

6. Encapsulate control logic in Controller blocks as necessary to achieve additional required functions, e.g., sequencing of the simulated equipment, event and data interfaces for integration with other controller blocks. Encapsulate entire MVC composites together for convenience in testing.

7. Test several MVC combinations together in a configuration approximating the physical system to determine how much of the desired system behavior can be achieved by simple interconnections without additional control logic.

8. Add diagnostic and fault recovery logic and encapsulate as appropriate in MVCD composites.

9. Add adapter interfaces as appropriate to simplify interconnection and encapsulate in MVCDA composites.

10. Add control logic to perform functions which cross device boundaries, and which cannot be accomplished by simple interconnections of existing control modules, e.g., mode control, systemwide startup, diagnostic reporting, etc.

11. Perform distribution design: Allocate MVC, MVCD or MVCDA composites to devices, adding communication function blocks as necessary to maintain data and event connections.

12. Perform physical design: Replace MV complexes by service interfaces to actual control system I/O.

Conclusions

The examples above indicate possible functions that could be implemented in future "intelligent" software tools in the IEC 61499 environment, such as:

· Consistency checking of WITH declarations between source and destination of event connections and the associated data connections

· Automated generation of communication service interface function blocks to implement event and data flows among elements of distributed applications

· Automated detection of devices on non-compliant links and automated generation of the associated service interfaces

It is hoped that this brief exposition will encourage further discussion and development of increasingly useful design patterns, engineering methodologies and their supporting software tools. In turn, these developments should accelerate and facilitate the development of IEC 61499-compliant devices and their widespread deployment in distributed IPMCSs.

� Senior Principal Engineer, Rockwell Automation Advanced Technology, 24800 Tungsten Road, Euclid OH 44117 USA, E-mail: JHChristensen@ra.rockwell.com

� J.H. Christensen, Basic Concepts of IEC 61499, Fachtagung Verteilte Automatisierung, Magdeburg DE, 22-23 March 2000.

� IEC 65/240/CD, Function blocks for industrial-process measurement and control systems - Part 1: Architecture, 2 June 1999.

� IEC 61499-2 (2nd Committee Draft to be published), Function blocks for industrial-process measurement and control systems - Part 2: Engineering Task Support.

� B.P. Douglass, Real-Time UML, Addison Wesley Longman, 1998, ISBN 0-201-32579-9, p. 219.

� ibid., p. 224.

� H.P. Otto, private communication to the author.

� Douglass, pp. 262ff.

� ibid., pp.14ff.

� Further details of this methodology, extensive examples and prototype software tools can be downloaded with an HTML browser following the instructions at ftp://ftp.cle.ab.com/stds/iec/tc65wg6/html/framework/framework.htm.

_1011034317.ppt

Feed conveyor

Presence/

Color

 Sensor

Pneumatically

actuated

diverter

Accepted product

Rejected product

_1013261595.ppt

Device 1

Device 2

Application FBs

Sensor/

Actuator

Link #1

Sensor/

Actuator

Link #2

Coordinated Operation

Proxy

SIFBs

Communication SIFBs

Machine

#1

Machine

#2

